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FORE JORD

In this thesis , an addition formula for Green ’s

functions of linear separable elliptic partial dif-

- 

ferentia]. equations in two independent variables is

derived. The formula is applied to generate new Green ’s

functions from known Green ’s functions.

This thesis is in manuscript format: it consists

of one manuscript and six supporting appendices. The

reconmtended starting point for reading the thesis is

• Appendix A: Overview of the Thesis. 
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1.

- AN ADDITION FORMULA FOR

GREEN’ S FUNCTIONS

by

JEFFREY S. COHEN and JOHN S. PAPADAKIS

Naval Underwater Systems Center
New London Laboratory
New London , Connecticut 06320

1. INTRODUCTION 
-

One of the most general approaches to solving bound-

ary value problems for linear differential equations

consists of expressing the solution in terms of an

auxiliazy function called the Green ’ s function. The

Green ’s function is usually defined to be the solution 
•

of the adjoint problem with a delta function as a non-

homogeneous term. The particular boundary conditions

• affect the formulation of the adjoint problem and thus ,

the Green ’s function as- well. The Green ’s function

method can be applied to elliDtic , parabolic , and hyper-

bolic linear partial differential equations as well as

linear ordinary differential equations .

This paper presents a derivation of a formula

that gives a form of the Green ’s function of a separ—

able elliptic partial differential equation in terms

of the Green ’s functions for two simpler equitions , one

of which is elliptic and the other hyperbolic. Because

- —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
, :



.~~~ ~~~~~~~~~~~~~ 
-
~~~~

-
~~~~

- - ‘ - —
~ 

- .—
~

-- ---
~~~

—- ---- — ----- 
- - •----

~

- -- - -
---- :

‘-• ----‘

~

--‘

of the pre sence of the hyperbolic equation and for the

sake of completeness , we shall~, in section 2 , briefly

review the definition of the Green ’ s function for a

Cauchy problem and its relationship to the Riemarin

• function. Then , the Riexnann function , which is known

in some special cases , can be used to find the Green ’ s

function in these cases. In section 3 , the formula

will be formally derived , applied to the reduced wave

equation , and be further justified. In section 4 , we

shall apply the formula to derive what we believe to

be a new Green ’s function.

Before proceeding however, it is interesting to

note that although we are primarily interested in

~reen’s functions for elliptic problems, the motivation

- for this work came from recent papers on hyperbolic

problems . A second—order linear hyperbolic equation

in two independent variables may be solved using the

R.iemann function. In 1958 , Cooson [Ref. 1] formally

derived a technique giving a possible form for the

Riemann function (which Copson called the Riemann-Green

function) , assuming the variables are separable . The

technique utilized integral transforms which generali-

zed Riexnann ’s own use of Fourier cosine transforms . In

1964 , Mackie (Ref. 21 investigated similar problems and

presented a close relationship between the Riemann

~~~~~~~~~~~ • ~~~~~~~ 
-•---- - - --~~ • - -  ~~~i:~~~~ 1 : _ ~~~~~~~~::1~: ~~~ ~~~~~~~~ , -_____
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function and the Green ’ s function for the Cauchy prob-

lem. Mackie then apolied Fourier—Bessel transforms to

find the Green ’s function for Rieinann ’ s original example

and utilized the relationship between Riemarxn and

Green ’ s functions to find the Riemann functions. Re-

cently, Papadakis and Wood [Ref. 3] developed an addition

formula that gives the Riemann function of a separable

equation in terms of the Riemann functions of two simDler

equations . Zn deriving the formula, they employed a

refinement of Copson ’ s integral transform method to find

Green ’s functions and then utilized Mackie ’s relation-

ship to find the Riemann function. In this paper, the

technique is further developed by applying it to Green ’s -

• functions for elliptic partial differential equations .
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4

2. PRELIMINARIES

a. The Green ’s Function for Elliptic Eauations

Consider the linear elliptic second—order par-

tial differential equation in two variables

E[u] = U + u + 2a(x,y)u~ - 2b (x ,v)u 
-

+ c(x ,v) u (x ,y) = f(x,y) (2.1)

with suitable boundary conditions on a closed curve 1’
(e.g. , u = 0 on I’) .  The Green ’s function for (2. 1) ;

G(x,y;X,Y) is defined as the solution to the adjoint

equation

E*[G] G,.~ + G~~ 
— 2(aG)

~ 
+ 2 (bG)

7 + ~~

= ~(x—X) d~Cy—r) (2 . 2)

with suitable (adj oint) conditions on the boundary 1’

(e.g., G — 0 on ~). If D is the interior of r ,
the solution of (2.1) can be written in the form

u(X,Y) — f fG(x,y;x,~ )f(x,y) dxdv + B(ia ,G] (2. 3)
D F

where B(u,G] is known on I’ (e.g., B(u,G] = 0 on ~) .

• 
b. The Green ’s function for Hyperbolic Equations

The concept of the Green’s function is also

meaningful for the Cauchy problem

_ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~



5

H [ u] = Uxx - u~~ + 2a(x ,v)u~ 
- 2b (x~v)u~

+ c(x ,y)u (x ,y)  = f ( x ,y) (2.4)

with initial value u and u given on the line
y

y — ‘i0. As in the elliptic case , the Green ’ s function

G (x,y~X,~ ) is the solution of

= ~~~ - G~~ - 2(aG)
~ 

+ 2(bG)
~ 

+ cG

— S (x—X) ~S (v—Y) (2.5)

subject to the adjoint boundary conditions -

on F - (2.6)

where is the (outward) normal derivative of G on

F, and r is a non—characteristic curve (i.e., the ab-

solute value of the slope of I’ is always less than 1)

such that F and a seqment, g of the line y = y0
form a closed curve , as in Fig. 1. From (2 .5 ) ,  (2 . 6 ) ,

and the amount of freedom we have in choosing F, it can

be seen that G = 0 in the portion of the interior of

F+.~ outside the triangle ~~~, with vertices at points

P , A, and B. Now the solution u of (2.4) is given by

u (X,~ ) = J f  G(x ,y ;X,Y)f (x ,y ) dxdy

— J Cu G—uG +2buG) dx. (2.7)
- 

~
‘ •~‘

~~~~~~~~ ~~~~~~~~~~~~~~~ . - • -~~~ . .‘‘~~ ‘ - -~~~—-- ‘-•---- —--- -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •-~~--- - ‘-~~~~~~~~——------~---- --—-j--—. -~ — ~~~~~~~~~~~~~
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c. The Riemann Function

For the Cauchy problem described above , the

Riemann function R(x ,y ;X ,Y) is the solution of

0 (2 . 8 a)

satisfvinq

- R
~ 
+ R~ = (a+b ) R on y—Y = x—X (2. Sb)

R
~ 

- R~ (a—b)R on y—Y = -(x-X) (2.8c)

R (X ,Y;X ,Y) = 1. (2.8d)

Now the solution of ( 2 . 4 )  is given by

= - 4 11 R(x,y;X,Y)f(x,y)dxdy
+ ~~~

, J (u~R_uR~+2buR} dx
+ ~.(u(A)R(A;P) + u(B)R(B;P)]. (2.9)

If the initial values of u and u~ are homo-

geneous (i.e., identically 0) along y = y0, a compari—

son of (2.7) and (2.9) would lead to

G(x,y;X,Y) = — 4 R(x,y;X,Y) (2.10)

inside the triangle i~. If the initial data along

y — y
0 

is nonhomogeneous, the contour integral in (2.7)

requires integration of terms including G and G
7

along lines across which G itself is discontinuous.

This generates terms analogous to those inside the 
-

~ 

~~~~~~~ ~~~~~~~~~~~
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brackets in ( 2 . 9 ) .  Thus , (2 .10) holds for arbitrary

initial data. (Except for a difference in notation

between a Green’ s function and an adjoint Green ’s func-

tion , the analysis leading to (2.10) is due to Mackie

[Ref. 2].) 
-
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~
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-
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3. THE ADDITION FORMULA

a. Formal Derivation

Let us consider the separable elliptic equation

L(u] = u~~ + u~~, + [c1(x)+c2(y)]u(x ,y) — f(x,y) (3.1)

• and attempt to find the “free—space ” Green’ s function
- (i.e., assuming c1(x) and c2(y) are analytic, find

a Green’ s function over the entire (x ,y) plane). Since
L is seLf—adjoint, G(x,y;X,Y) must satisfy

L*(G] L(G1 = 5(x—X) S (y—Y) . (3.2)

We shall attemot to find an expression for G in terms

of the Green’s function G1 satisfying the hyperbolic

equation

— G1 + c
1
(x)G

1 = 6(x—X) ~S(y—Y) (3.3)
xx yy

and the Green’s function G2 satisfying the elliptic

equation

G2 + G2 + c2(y)G2 5 (x—X) S (v—Y). (3.4)
xx yy

It has been shown by Papadakis and Wood (Ref .  31

that

R.~(x,y;X ,Y) R1(x ,v—Y;X ,0) R
1

(x ,Y—y ;X ,0). (3.5)

Recalling (2.10) we can say that G
1 is also an even

~~~~~~~ -—  ~~~~~~~~~~~~~~~~~~~~~~ • L ~L~~~ - - 



function of y—Y wherever it is defined for both

+ (y—Y) and - (y—Y). We should like to make a similar

claim for G2 . If we assume a condition at ~~~, call

it a “radiation condition ,” ensuring the uniqueness of

G2, then we can claim that

G2(x,y ;X ,Y) G2 (x—X ,y;0 ,Y) G2 (X—x,y;0,Y). (3.6)

Clearly, any form of (3.6) satisfies (3.4). Thus, if

our “radiation condition ” is also satisfied by any form

of (3.6), the claim is justified by the uniqueness of

G2. Since we are proceeding formally at this stage, let

us accept these hypotheses and (3.6) as established,

with this final observation. If c2 (y) 3 k
2 (the case

with which we will be primarily concerned in this paper)

and the well—known Sommerfeld radiation condition (Ref.

41 is assumed, then G2 is unique and an even function

of x—X as desired.

Now, let us proceed by separating variables in the

homogeneous form of (3.2), leading to a pair of ordin-

ary differential equations, one of which is

2
e” (x) + (c1(x) + ~ ]e (x) = 0 (3.7)

where A2 is the separation constant. Assume there

exists a solution e(x A ) of (3.7) that defines a

transform

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - .
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f(X) = J e(x,x)F(x) dx.
Let ~(x,X) be the inverse transform so that

F (x) — f 8(x,A )f(A ) dA .
Applying the transform to (3. 2), integrating by parts

twice (ignoring terms evaluated at the endpoints of the

integral), and recalling that 9(x,X) is a solution of

(3.7)  yields

g~~ + (c2 (y) — A 2 ]g — ~ (y—Y) (3.9)

where g is defined by

g (y;X,T,A )8(X ,X) 3 f e (x ,x ) G ( x ,y;x ,Y) dx.

Utilizing the inverse transform gives

G~x,y;X ,Y) — .1’ e(x,A )e (X,X)g(y;X,Y,A ) dA . (3.10)

Now let us apply the same procedure to (3.3).

Separating variables leads to (3.7) again and there—

fore, the same solution e Cx, A ) .  Transforming (3.3)

yields

g1 + A 2g1 — —6 (y—Y) (3.11)
yy

where

I e(x,x)r,1(x ,y—Y;x,0) dx. (3.12)

_____ - - ~7.— • -~.- -- •- ;- ~ •~ •:fr-~~~ .
_

~~~~ — ‘_-* - • - . - - — _-
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Recalling boundary condition (2 .6)  and ‘ig. 1, (3.lj . )
can be solved uniquely with the initial conditions

g1 ‘~~ 0 and g1 -
~~ 0 as y -‘

g1(y—Y;x ,X) = — ~~~~~~~~~ ~t (y—y) H(y—Y )

where H is the Heaviside step function. Inverse

transforming (3. 12) yields

= —R (y—Y ) 
f~

(x1X)e(x,x)9 ~~~~~~ (3.13)

For the last time, seParating variables in (3.4)
leads to the equation

$“ (x) + A2~~(x) = 0

with a solution of the form ~~~~~ yielding a Fourier
transform. As before , we transform (3 .4)  and find

g2 + (c
2(y)—X

2]g
2 — ~(y—Y) (3.14)yy

-

. where

q2
(y;X ,y,A)e~~~~ ‘: e~~~~~G2 (x— X ,v ;O ,y) dx. (3.15 )

Recal.i.inq from (3.6)  that G2 is an even function of
x—X, it is easily deduced that g

2 is an even function
of A and independent of X. Also comparing (3.14) to
(3.9) leads to the conclusion that g2 3 g and there-
fore
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g (y ;X ,Y ,A )  3 g(y,Y;A ) g(y,Y;—A ).

Now, inverse transf orminq (3.15 ) and using the fact

that G2 and g are even

G2
(x—X ,y;0 ,Y) 

~~~

. J cosA (x — X ) g (y , Y; X ) dA . (3.16)

Let us formally assume that the integrals in (3.10) -

and (3.1.3) also have limits from 0 to ~~~. If, in

(3.13), we denote v—~ by t and investigate for t>O

we get

G~~ (x,t;X ,0) = .-f e(x ,A ) e ( X ,A)cosAt  dA. (3.17)

Rewriting (3.16) with t replacing x-X

= ~ f g(y ,Y ;X ) cosAt  dx. (3.18)

An ao~l~cation of Parseval’s identity to (3.17) and
• (3.18) yields

- 

J G].~~
(x

~
t 7X ? 0) G 2 (t

~
v;0 P Y) dt

= — f e(x ,A )  e (x ,x ) g ( y , Y ;x )  dX
0

— G (x,y;X ,Y)

th . last equality coming from (3.10), with the assumed

limits of intearation from 0 to ~~~. Thus we hone to

find the Gr..n ’ a function of (3.1) in the form

~ 

- - - - -  
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=

G(x ,v;X ,Y) = —2 J (L
~ (x,t;X,0)G2(t,y;0,Y) dt. (3.19)

o t 
-

Equation (3.19) is the general form that we shall

use in our search for Green ’s functions. In order to

get a more soecific formula , one must investigate the

behavior of G,~ and C-2 and the effects of boundar-

ies and boundary conditions on G. For the time being,

we shall continue on with our assumptions that c1(x)

and c2 
(y) are well—behaved functions and look for a

“ free—space ” formula. In section 4 , we shall analyze

(3.19) under different conditions.

Now , recalling our discussion of Green ’s functions

and Riemann functions for hyperbolic equations , and

particularly Fig. 1. and Eq. (2.10)

for y-Y < j x—X l

G
1
(x ,y;X ,Y) =

• - 
—~R1

(x ,y;X ,Y) for y—Y > x—X J

where the Riemann function , R
1
, is defined by (2. 8).

L Therefore , we can write

G1(x,t;X ,0) —4 R1(x,t;X,0)H(t—I x—XI)

where H is once again the Heaviside step function

Differentiating G1 with respect to t:

- - ~~••J ,4 •• ~ - - 
•
- -~~~ • 

.- .-. -.---

— __ _Aa__ ____ —• — • -_ — -- _.~~~~_—_ -- ._- _— _s _~____ _•• -~_ - -- —‘——-&•—-—----- -_- .•-~• ~~~~~~~~~~~~~ — — k ~~~- . ~~~~~~~~~~~~~~~~~~ -— __ • _ ~~~~~~~~~~~~~~~~~~~~~ -
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G1
(x,t;X,0) —

~~~
. R1

(x, t ;X ,0) 5 (t— l x — X I )

— 1 R (x ,t;X ,O ) R ( t — J x — X J ) .  (3 .20 )7 1 t

Substituting (3. 20) into (3.19) :

G (x,y;X ,Y) = f {R 15 + R~~H }G2 dt

= R1(x ,Ix—X I ;X,O)G2 (Ix—X l ,y;0 ,Y)

a

+ f R (x ,t;X,0)G (t,y;0,Y)dt (3.21)
f x—x J~~t 

2

Integrating (2 .8b&c ) with a = b = 0, as in this case,

we get

R1(x ,I x—XI;X,0) a 1.

From (3.6)

G2
(~x—X f ,y;O ,Y) = G2 (x— X ,y; 0 ,Y ) .

Lastly , R1 and G2, as they appear in the integral in

• (3.21), are even functions of t so that the integrand

— (with its t-derivative term) is odd, and we can drop

the absolute value from the lower limit of integration .

• Recalling (2.10 ) we can now write (3.21) as

G (x ,y;X ,Y) — G2(x—X ,y;0,Y)
(3.22)

— 2 J G~~~(x ,t;X ,O ) G 2 (t ,y;0 ,~~) dt .
x-X

Inte grating by parts and assuming that the term G1G2
evaluated at t — is zero , y ields the alternate form

— —•- —~ - . ;- - - • • - 4 . - — - - • - - ——— ~~——-~ ~~~—•---—- --•-——-————-----•-_--—- -•- -- — _ •- - — -



G (x ,y;X , Y) = 2 J’~ GL (x ,t ;X , O ) G 2 (t ,y;0 ,Y) dt. (3. 23)
x-X t 

—

Equations (3 .22 )  and (3.23) are the relationships be-

tween the Green’s functions G, G1, and G2 satisfying

(3.2), (3.3), and (3.4) which we wished to derive from

our general form (3.19). Of course, all our work so

far is entirely formal and thus, justification is re-

quired. Although we do not intend to produce a rigor-

ous proof of the validity of the formulas, we shall —

verify that they. satisfy some of the properties of

Green’s functions and further justify some of our as-

sumptions. But before continuing in this endeavbr,

let us convince ourselves that it is worth the effort

by testing the formulas on a problem for which we know

the correct answer. -

b. A Test Problem - The Reduced Wave Equation

In this section, we shall utilize (3.23) to
- - 

~~

- find the Green ’s function for (3.1) with c1(x) a —a 2

and c2 (y ) a b2 , where a and b are real , positive

constants satisfying

= b2 
— a2 > 0. • - (3 .24 )

Notice that we have broken up the positive constant k 2

as the difference of two positive constants rather than

the sum. We shall comment on this choice later in the

section .

____ _~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~
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Now we can rewrite ( 3 . 2 ) ,  (3.3) , and (3 .4 ) , the

equations for G, G1, and G2 ,~respectively,as

+ G~~ + k
2G = 6 (x — X ) ~5 (y ~ Y )  , (3.25)

C1 • — G~ — a2G1 
a S (x—X) d~(y—Y ) , (3.26)

xx yv
and

G2 + G2 
+ b2G = ~ (x—X ) d (y—Y ) . (3 . 2 7 )

The solutions of (3.26) and (3.27) are known to be

—4r (a/ (y—Y) 2_ (x—X) 2) for y—Y> I x-x I0 — (3 . 2 8 )
G1(x ,y~X,Y) =

0 for y— Y< J x— X~

and

G2 (x,y;X,Y) =~~~~~ H~~~ (bf(x—X)
2+(y—Y) 2). (3.29)

Substituting (3.28) and (3.29)  into (3.23) and then

performing the required differentiation yields

G(x ,y ;X ,Y) = ~f J 0 (a/t2_ ( x_X) 2 )fr !~~~ (b/t2+( y—~ ) 2 )d t.

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

bt dt
- 
‘t
2+ y—Y 2

c hanging the integration variable from t to

/ 2  2s — ~t — (x—X)

~~~~~~~~~~~ 

- - 

~~~ 

-k I ~ ‘4 ,  •~~~ ~~~~~~~~~~~ - ‘- 
-L ~~~~~~ -~~~~~ - --- ~~~~~~~~~ 

,
~— ~~~~~~ ‘ —_- - -
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yields

G(x ,y ; X ,Y) i--- J J (as)E~~ (bIs
2+r2) bs ds (3.30)

S

where r 3 /(x_X) 2+ (y_Y) 2 .

Utilizing (3.24) and the appropriate integral tables

(Ref. 5, pg. 358, 19.4(3) and Ref. 6, pg. 706,

6.596(6)3 yields

G(x,y ;X ,Y) ~~~~~~ H~
1
~ (k r) 

- 
( 3.31)

the well—known free—space Green ’s function for the re—

duced wave ecuation (3 .25) .  •

Returning to the remark following (3. 24), we note
2 2that i.f k - were the sum of a and b 

- 
then , in

- - (3 .28) ,  G1 would consist of an 1~ , a modified Bessel

fun ction , rather than a J0. If, in (3.30), the J3

- - term were replaced by I
~
, the integral would diverge

• since I~ increases exponentially for large arguments.

Thus, even under conditions when the formula is ap~1i-

cable, each problem must be studied with great care

and a certain amount of ingenuity may be required in

order to solve the problem .

Let us note that the formula also works for the

case c1(x) = —a 2 and c2
(y) — —b 2 . The analysis is

almost identical with the preceding example , with the

elliptic Green’s function H~
1
~ replaced by

—

~

--- • -~t~~- ’.i±~ -

_
_ :~~~~~~~~

- - —- - - - -- - - - -
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—l K , the modified Hankel function . Re ference 6
~T 0
(pg. 706 , 6 . 5 9 6 ( 6 ) ]  provides the required integral.

c. Further Justification of the Addition Formula

In order to verify the addition formula (3.19)

or formulas derived from it , such. as (3.22) and (3.23),

at least three properties of our representation of G

should be checked:

(1) that the integrals involved converge ;

(2) that as (x,y) -
~~ (X,Y), G ~ossesses the

- appropriate (logarithmic’ singularity; and

(3) that for (x ,y )  ~ (X ,Y ) ,  G satisfies the

homogeneous equation .

Properties (1) and (2) should be verified for each

specific problem investigated; that is , for the parti—

cular G1 and C2 that happen to arise. For for-

mulas (3 .22 )  and (3.23), property (3) can then be veri-

fied in general by direct differentiation.

Differentiating (3.23) twice with respect to x

and recalling that for (x,y) ~ ( X , Y ) , G, = G, -

- 

- - c1G1 (fr om ( 3 . 3 ) )

Gxx a G 2 2G2 (G1• xx X x y—Y x-X

a

+ 2 1 G C2 dt - c1G. (3.32)
‘x—X 1tt t

Similarly, differentiating (3.22) twice with respect to

_____ - -‘-—--—- ~~~~~~~~~~~~~ 
-
• • - - - .

—
~~

-. - -.~‘. - - -~~ ‘ ‘
~~~

-~~ -• —- ______~~&__~~~
__— -j---- — -~-—— — - -  —---- -
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y and recalling that

G2 = —G2 
— c2G2 

(from (3.4))
yy xx

G = G + 2 f  G1 G2 dt + 2c2f G G2 dt. (3.33)yy x-X t tt x—X 1t

Adding (3.32) and (3.33)

Cxx + G~~ = —c1G + (G2 +G2 ) + 2c2f G1 G2 dt

+2f C1 G2 +G G2 ) dt-2G2 (G
x-X t tt itt t ‘C y-Y=z-X

a —c C—c (C —2 f G G dt) +2f (C G ) dt1 2 2 X X 1t x—X 1t t t

- — 2G2 (C,
x ~~

So , using (3.22)

• G + G  +(c +c,)Gxx yy 1
a

= 2(G~ C2 ) — •2G (G1- 

- 
- t t t x-X X y Yax X

• Recalling that we have already assumed that G1G2 
-

~~ 0

as t -~~ in order to integrate by parts , let us fur—
• ther assume that G G -

~~ 0 as t -~~ a. Then

- 
- Cxx + G~~ + (c1+c2 ) C a -2G~~~(G~~ +G~~ ) 

y-Y-x-x 
= 0

by (2.10) and integration of (2. 8b , with a = b 0 ) .

Thus,(3.22) and (3.23) satisfy the homogeneous equation

away from the source if

F

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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lim C (x , t ;X ,0 ) G  (t ,y ;0 ,Y) = 0 ( 3 . 3 4 )
~~~~~~~~~ 

1 2

and

lim 
~~~~~~~~~~~~~~~~~~~~~~ 

= 0. (3.35)

These conditions were met by the Green’s functions in

our test problem.

Let us note that in some cases conditions (3.34)

and (3.3 5) may be unnecessarily restrictive. In parti-

cular (3.34) was used to integrate (3 .22 )  by parts and ,

thus, deriving (3.23). Then we used the equivalence of

(3. 22) and (3.23) , along with (3.35) , to verify that

our formula did indeed yield a solution of the homo-

geneous differential equation. However, it is possible

for (3.22) (or (3.23), for that matter) to be valid

while (3.23) (or ( 3 . 2 2 ) )  is not.

Consider Laplace ’s equation

+ ~~~ 
a 0. (3.36)

With c Cx) and c (y) both 0 , C and G are the
1 2 1 2

Green ’s functions for

an
’C’C 

— = 0 
~~~~~.

+ Uyy 0 (3.38)

respectively.

Then ,

-~~ I _______________________
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_~~~~~~~~ _-~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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for y-Y > I x-x I
G1(x ,v;X ,Y) = (3 .39)  —

0 f or y—Y < I x— xI

and , letting r /(x-X)2+ (y—Y)2

C2 (x,y;X ,~~) 
a log r. (3 .40 )

- 

Substituting in (3.22) we find the well-known free—

space Green ’s function for Laplace ’ s equation

G(x , y ;X ,~t) a log r , 
(3.41)

since CIt 
0 inside the integral appearing in (3. 22) .

However, (3 .23) diverges for the same situation.

Now, in light of our successful general verifica—

tion of property (3) and our successful applications of

the formulas in the test example and Laplace ’s ecua—

tion , let us take a heuristic look at properties (1)

and (2 ) by placing certain restrictions on c1(x) and

-- - c2 (y) and the boundary conditions associated with (3.1)..

For the formal derivation,we assumed that c1 and c2
were analytic in the entire plane. Now, let us modify

this assumption so that rather than the whole plane ,

we are looking at an infinite domain with boundaries

separable in x and y (e.g. ,  the half-plane •x > 0 ) .

A.tso let us assume that any singularities in c
1 

and

c2 appear outside the domain of interest. Finally,

assume that as x and y approach a , c1(x) and

~~~~
T ~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~u~••~

__ _•~
_ 

~~~~~~ ~~~~~~~~~~~~~~~~ •~~~~~__ ‘ •~~~~~~~~~~
_

•
_

_- 

~~~T~1~i
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c2 (y) approach real constant values. Without loss of

generality, it can be assumed that C1 approaches a

negative constant since we can subtract a constant from

c1 and add it to c2 and not alter the total coeffi-

cient in (3.]).

With these assumptions on c1 and c2 ,  we can

hope that G1 and G
2
, satisfying (3.3) and (3.4),

will behave, near =, like J0 and H~~ (or K
0

) ,

the Green’s functions satisfying (3.26) and (3. 27).

From the test problem, we know that the integral (3.30)

converges and thus hope that the integrals pontaining

G1 and C2, (3.22) and (3.23), will also converge and

that the integration by parts leading from one form to

the other will be justified. If necessary, further

restrictions on how fast c
1 

and c2 
approach their

limiting values could be made to insure asymptotic

knowledge of C1 and G2, or perhaps entirely differ-

ent types of assumptions are necessary. However, since

— 

— 

• the derivation of the addition formula has been formal,

we shall leave the problem of convergence at this point .

We shall cope with the problem of the singularity

as (x ,y) -
~~ (X,Y) in much the same vein. Since we

- - 
- have assumed that C

1 
and C2 are well-behaved , we

shall also assume that they can be treated locally

as constants. With these assumptions we can hope that

the general C1 and C2 will behave like their
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counterparts in the test problem and exhibit the ap-

propriate singularity.

While these arguments indicate that properties

(1) and (2 )  will be satisfied by certain types of in-

teresting problems, let us recall that these proper-

ties should be checked for each individual problem.

Property (3), however, has been directly verified

under general conditions.

- 

-q

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _________ _ _ _ _ _ _
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4. THE GREEN’S FUNCTION FOR ~~~ + u~~ + (k 2- m (!fl+1)
] 0

a. Derivation of the Green’s Function using the

Addition Formula

In this section,we shall finally apply the addi-

tion formula to a non—trivial examp le. To the best of

our knowledge , the Green ’s function found in this sec-

tion has not been previously presented.

Let us consider the equation

L[u] = uxx + u~~ ~ (k
2 

- 
m (rn+l )

1 = 0 (4.1)

on the half-plane x > 0 , where xn is a positive inte-

ger. We shall attempt to find the Green ’s function

G(x,y;X,?) for (4.1) on the half-plane x > ‘5 satis— -

fying

L(G] = S (x—X) d (y— ~ ) ( 4 . 2 )
- 

• 
- G a O  on x = 0  (4 .2a )

C 0 as j (x ,y) a 
• (4 .2b )

As (4.1) seems to suggest we shall apply our for-

mula with c1
(x) a - 

m (m+l) and c2 (y) = k2. Thus, we

must find the Green ’s function C1 
for

— - 
m(za+l) U a . (4.3)

As we have seen previously , G2 must satisfy (3 . 2 5 ) ;  so

- ,~—•—- —
~~ -~~

_ z -
~~ 

- ... . - . - • - .. - - - - -
~~~ - - ~~

-.
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G2 (x—X ,y ;O ,Y) = ~~~ (kr )

where r 3 /(x—X)2+ (y—Y) 2.

In order to avoid an unnecessary digression, we

shall show in Appendix S that

~ ~~~~~ 
f or I x — X I < y - ~ <x+X

G1(x,y—Y;X ,O) (4.4)
0 elsewhere

where ~ 3 
x2+X2— (y-~ )

2 
and P is the Legendre ~olv—2xX In -

nomial of the first kind -(see Fig. 2).

Now that G1 and G2 are known , we can return to

our general form of the addition formula, Eq. (3.19).

Then (4.4) may also be written in the form~

2 2 2
G, - ( x ,t ;X , O )  = —4 p (C +X —t )H(t— I x—x l ) H (x+X—t) .

~ m 2~ X

Noting that P (~) is the Riemann function R1 (x ,y ;X ,?)

for (4.3), we can also write

G1(x ,t ;X ,O) — -
~~~ R1(x, t ;X ,0) H (t— I x — X J )  H (x+X—t ) . (4 . 5 )

• Differentiating with respect to t

C1 (x ,t ;X ,O) a —~.R 1 (x,t;X ,C)H(t— Ix—X~)H (x+X-t)t 2 t

4R 1
(x~t;X ,O)~s (t— I x—XI)H(x+X-t)

4R 1
(x ,t;X,0)H(t— j x—X I)6 (x+X— t) .

Substitution into (3.19) yields
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G -2 1 G1 G.,dt — I R1 G.~dt
~ ~~x—x j t ‘

+ R11 H ( x+X— J x — X l ) G 2~
I v-Y= I x-Xl y—Ya J x—X I

— R~j a (x+X— ~x—Xl )G 2 l . (4 .6 )
I y—Y—x+X jy_ ~.x+X

Since x and X a’e both positive , the Heaviside

functions are both 1. Since R1 is the Riemann func-

tion for (4 . 3 ) ,  R1 = 1 along the characteristic line

y—T — x-X; a fact we could also have found by noting

that P~ = P (1) = 1. Although we also know
y~Ya x-X In

p ( 1) = (_ 1) m , we shall not use this fact
y—Y x+X In

at this stage of the analysis because it appears to be

too specialized (i.e., cannot be deduced from prooer—

ties of the Riemann function) to include in a general
- 

• 
form of the formula. Now , since the integrations over

- 

- the discontinuities of C
1 have been taken into ac—

count, we can reolace R1 by -2G1 and using the now

familiar argument that G2 is an even function of t

and that the integrand in (4 .6 )  is odd, we get

G (X ,Y;X ,Y) a _2r G1 , t;X ,0)G2 (t ,y;0 ,Y)dt

+ G2 (x—X ,y;0 ,Y)

+ 2G1(x ,x+X;X ,0)G2 (x+X ,y;0,Y). (4.7)
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Equation (4 . 7 )  is the counter art of ( 3 . 2 2 ) .  As

a matter of fact, in this case we did not need to go

all the way back to (3 .19) .  We could have substituted

our expression for G1 , (4.5), into (3.22) and gotten
- t

(4.7) . However , because we have not proven a theorem

as to the applicability of the formula, we gain more

confidence by reanalyzing (3.19) than by performing

blind substitutions. Now , integrating (4.7) by parts

• yields the counterpart of (3.23)

x+X
G(x ,v;X,Y) = 2f G1

(x,t;X,0)G2 (t ,y;0,Y)dt. (4.8)
x-X

Direct differentiation of (4.7) and (4.8), in a

manner analogous to that performed in section 3c, yen —

fies that C is indeed a solution of (4.1) for

(x,y) ~ (X,Y). Let us note that because we have finite

limits of integration, we no longer need conditions

(3.34)  and ( 3 . 3 5 ) .

Substituting our known forms of G1 and C2 into

H (4 .7 )  and ( 4 . 8) ,  with the added notational convenience

3 /(x+X)2+ (v—Y )2, yields -

G(x ,y;X,Y) 1~~~ (l) Ocr) - (-l)~ H~~~ (ks)

(4.9)

+ I .~!.w (X 2+X 2_t 2 ) ff (1) (k/t2+ (y_ Y) 2 )dt
J x—X ~t 2xX 0

and

— ~~-~~: •- - 
~~~~~~~~~~~~~~~~~ ~. - - ~• -bc -

~ 
-
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- X+X 2 2 2
G(x ,y ;X ,Y) = 

~j4~ J — 

2~~(~C +X —t ~~~~ (kv42+
(y_Y)2)dt.

1. x X  2xX t
(4 .10)

So , for any positive integer m, we have shown

that the addition formula yields the convergent inte-

grals (4.9) and (4.10) which also satisfy (4.1) for

(x ,y) ~ (X ,Y). If we now differentiate the H~~~

term as indicated in (4.10) and then perform the change

of variables

/ 2  2 - 

-

= it + (y—Y)

we get

G(x,y;X,Y) a p cx +x +(v y) 
~~)H~

1
~ (ks)kds .

r In 2xX
- (4.11 )

In this form , we shall show that C - 

has the appropriate

singularity, C -
~~ 0 as x -‘ 0, and G -

~~ 0 as r - a •

- - 
- b. Verification of the Singularity of the Green ’s

Function

For notational convenience in investigating

- the behavior of C near the singular point r a

let us write

a 
x2+x2+y — ~~

2— s2 ?2+r2—2s2 
, (4.12)

2xx r2—r2

the identity following directly from the definitions

of r and ~~~. From (4.12) it is evident that, for

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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0 <  r < s and for s -
~~ 0 , ~ -~-1. Therefore

u r n  P ( C ) = P ( 1 ) = 1
0<rc s-”-O Ui

by the continuity of all the functions involved. So

given c > 0 arbitrarily small , choose ~ > 0 such

that

O < r < s < ~ ~~~ 1—c < P,~(~ ) < 1 (4.13)

and such that

Y1(ks ) < 0

is simultaneously satisfied , where of course is

the first order Bessel function of the second kind (i.e.,
a Im{H~~~ }).

Now for 0 < r < S rewrite (4.11) as

a 

~~ 
P ( ~ )J 1(k s)kds + 

‘r 
P
~~
(
~
)Y1(ks)kds

+ 
~~
. 

f
r 

P ( ~ )Y 1(k s)kds . (4.14)

The first and third integrals in (4.14) are well-behaved

and approach constant values as r -
~~ 0. Recalling

(4.13), we can apply the mean value theorem to the re-
• maiming integral resulting in -

G a 
~ 

~~~(~ *) (Y
3
(kr) - Y0 (kô)] + constant

____ ______________________  ~~~ J4 -  -- i- ~~~~~~~ 
- -1

— —a —~~~~~---- ~~~~~~~ — -•--— ~~~~~~~~~~~~~~~~ --~~~~ .- ~~~~~~~~—— ~~~~~~~~~~~~~~~~
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where C~ is evaluated at s~ c (r, 6). We know that

for any a c (O,~ ), 1—c < P~~ < 1 so that

~.(1-c)Y0(kr) + constant < C < 
~~
. Y0(kr) + constant.

Thus, as r -
~~ 0, C behaves like ~~

- Y0 (kr) or eauival-

ently log r (Ref. 7, pg. 360, 9.8.1], as desired. - 
-

We have now verified conditions (1) , (2 ) , and (3) of

section (3c) , that is , the integrals in our representa-

tion converge , that G possesses the correct (log a— -
- 

-

rithrnic) singularity, and that except at the singularity

G satisfies the homogeneous partial differential equa— 
- 

-

tion. All that remains is an investigation of the boun—

dary conditions. 
- 

-

c. Verification of the Boundary Condition along

x = 0

Approaching the singular line x = 0 in the

half—plane x > 0 , we have 0 < r < ~~~. In this case,

for r < s < r, as the limits of integration in (4.11)

- 
indicate, we observe from (4. 12) that -1 < < 1 and

therefore < 3. [Ref. 83. We can now write

i.u r n  J G J  < lizn 
~ f JP~

(
~
) I -  I H ~

1
~ (ks) kdsx-iQ x--0 r

1< u r n  
~ 

( ~~~~ (ks) I kds = 0 ~x-0 ‘ Jr

since as x . 0, r ~ ~~
- and r is strictly positive

- .-
-~ - •
‘ 

-

~~~~~~ ~~~~~~~~~~~~~~~~~~~ - -



(as a matter of fact r > X > 0 on x = 0) and , thus ,

(ks) is a continuous bounded function in the

interval from r to

d. Verification of the Condition at Infinity

Lastly, we investigate the behavior of G as

r -~~ a , Once again, 0 < r < r and 
~
Pm (C) I < 1 30

that, from (4.11),

I G I  ~ ~ fr
IH~

1 (ks) I kds

< ~-IH~
1
~ (icr) (~—r) (4.15)

since 1ff1 (kr)~ is a monotonicallv decreasing func-

tion. [Ref. 6, pg. 969, 8.478]. From the definitions

of r and ~ we find that

O < ~—r a r((1 + 
r2~ 

— 1]. 
-

For r sufficiently large, simple manipulations show

that

0 < ~—r < 2X + O(~) . 
- (4.16)

For r large, it is also known (Ref. 7, pg. 365,

9.2.28] that 
-

a 0(r’1”2) . (4.17)

Substituting (4.16) and (4.17) into (4.15) yields

I ’

• - ~~~~ ~~~~~ - ~~~~~~~~~~~~~~~~~~ I •L~~~L ~~~~
- - - - - •-—--

~~~~~~
- 
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IG I < 0(r~~
”2)

and,thus, G -
~~ 0 as r -~ - 

~~~. Hence, we have demonstra-

ted that (4.11) satisfies (4.2), (4.2a) , and (4.2b) .

a. A Closed Form for ~ = 1

For the case m a 1, (4.11) becomes easy to

integrate, utilizing the facts that P1(c) — ~ and

f s2i~~
1
~ (ks )kds = ~

2
ff~1) (ks) a 

~~~~~~
. H~

1
~ (ks)

— s2R~
1
~ (ks) (4.18)

(see Ref. 6, pg. 634, 5.52(1) and pg. 967, 8.471].

From the first equality in (4.18) we integrate (4.11)

to

G(x,y;X ,Y) = ~~ x
2
+x2+ (y_y )

2
(H~1) (kr)-E~

1
~ (k~ )]

+ f. ~~~(r2R~l) (kr)— ~-2a~~ (k~)] (4.19)

- 
- — 

~~~~~ 
(a~ 1) (kr)—H~

3
~ (k~)]

+ 1 2 (r2ff ~
1
~ (kr)-~

2!j~~ (k~)]. (4.20)4i r2—r2
- 

- 

-

~~ Utilizing the second form of (4.18) yields

G (x,y;X ,Y) = 
~~~~~ 

H
0~~ 

(kr) + fr H~~~ (k~ )

— (rH~~~ ( 1cr)—~-H~~~ ( k s ) ]  . (4.21)
k(~

2—r2)
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f. The Case )c=0

Using standard ascending series forms for

and Y (z) (Ref. 7, pg. 360, 9.1.10 and 9.1.11]

it is easy to show that

axj

U (z) = log z + + y—log2] + O(z
2log z)

ff~l) (z) a 
fr ~j  

+ 
~~

-- + 0 (z2log z).

Substituting these forms into (4.19) and letting k -
~~ 0

yields

G (x,y ;X ,Y) = L 2~~2 
~‘~~~

2
)log r/~ + ~~— . (4 .22 )

2-ir 2xX

Thus , (4 .22 )  is the Green ’s function for

‘ 2 (4. 23)

satisfying the boundary conditions C -
~~ 0 as x 0

and as (x—X ,y—Y) -
~~ ~~~. It is interesting to note

that (4.22) displays precisely the same form as a

fundamental solution as defined by Garabedian (Ref. 9].

If we allow k to approach 0 through positive

values in (4.11) , we get

G(x ,y;X ,~ ) a—~~~ ‘: ~~~~~~~~~~~~~~~~ 
. (4.24)

(4.24) can also be derived directly from the addition

formula (4 .8 )  where G1 still is the Green ’s function

for (4 .  3), but G2 = log r is the Green ’ s function

I - ~
iüL~~~

-
~~~~~~~~~~~~ ~~~~~~



- - P-,. ~~~~~~~~

for Laplace’s equation (3.36). In the case m = 1,

(4. 24) integrates directly to our solution (4.22).

Since P~ is simply a polynomial, a straightforward

integration of (4.24) may be performed for all posi-

tive integers m , yielding closed form Green ’ s func-

tions for

+ - 
rn (rn~ 1) u = 0

which satisfy the boundary conditions G -
~~ 0 as

x~~~O as r~~~— .

4-

~~~~~~~~~~~~ -~~~ -~~~~~~~~~-~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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5. SU~~&ARY

In section 4, we applied the addition formula to

the equation

u + u + [k
2 

- 
m (m-s-1) 1 ~ = 0 (5.1)Xx yy x_ ’

and verified that the integral expression we derived

was indeed a Green’s function. For the particular case

m = 1, we were able to express the solution in a closed

form. In addition, we succeeded in letting k -‘ 0 in

the general integral form yielding Green ’s functions

for (5.1) with k = 0. While no claims have been made

about the uniaueness of our solutions , we feel that ,

for these equations the presentation of solutions, in

such relatively simple forms, possessing the correct

singularity and homogeneous boundary conditions is,

in and of itself, of great interest and importance .

Furthermore, the addition formula derived in sac—

- 

•

: 
tion 3 yields a new method of searching for Green’s

functions for separable elliptic partial differential

equations. Of course, some analysis must be performed

for each problem encountered, but our successful ap—

p].ication of the formula to the ~equations studied in

sections 3 and 4 encourages us to attempt to apply

the formula to other cases.

________ - _
~~

_I ~ _J-_~~
__• 

---. 
-  

- - ‘ -  - -~ - 
. ‘- -

~~
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~~ 
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Appendix A: OVERVIEW OF THE THESIS —

1. INTRODUCTION

The major point of the thesis is the presentation

of a technique which yields formulae for Green’s func-

tions of linear separable elliptic partial differen-~
tia]. equations in two independent variables. The for-

mulae require knowledge of the Green ’s function (or

Rieinann function) of a hyperbolic equation and the

Green ’s function of an elliptic equation . Both the

hyperbolic and elliptic equations utilized in the pro-

cess are substantially simpler than the original aqua-

tion. Thus, known Riemann and Green ’s functions may
•

be used to generate formulae for new Green’s functions.

Once a formula for the Green ’ s function ~s known , one

can usually justify the result rigorously using stan-

dard analytical techniques. In addition, the overall

process is applied in the thesis to find specific

Green’s fuz~ctions satisfying homogeneous boundary con—

ditions which we believe to be new solutions.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~~

- . .‘- - ~~~~~~~~~~~~~~~~- b  ~~~~~~~~~~~~
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2. CONTEXT OF THE THESIS

The manuscript deals with the seif-adjoint equa—

tion

uxx + u~~, + (c1(x) + c2 ( y ) ] u  = 0. (A.l)

In order to find the Green ’s function G(x ,y;X ,Y)

for (A .l)~ we investigate the Green ’s function

G1(x ,t;X ,0) of the hyperbolic equation

(A.2)

and the Green’s function G2(t,y;0,Y) of the elliptic

equation

utt +u
~~~

+ c2(y)u = O. - (A.3)

The motivation for calling our result an addition for-

mula comes from the fact that formally adding (A.2 )

- 
- and (A.3) yields (A.l) .

Employing separation of variables, transform

techniques for solving ordinary differential equa—

tions , and Parseval’ s identity from Fourier transform

- 
- theory, we derive the addition formula

G (x ,y;X,Y) — G2 (x—X ,y;O ,Y)

—2 f G1 (x,t;X,O)G (t,y;0 ,Y)dt. (A.4)
x-X t 2



•— - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ---- - -

~~~~~~~~~~~
-“

42

Integrating by parts and assuming that the term G1G2

evaluated at t = ~ is zero, yields the alternative
form: -

C(x,y;X,Y) = 2J G1(x ,t;X,0)G2 (t,y;0,Y)dt. (A.5)
x—X t

The significance of formulas (A.4) and (A.5) is

apparent. If c1 (x) is such that the Riemann func-

tion of (A.2 ) is known or can be found and c2 (y) is

- 
such that the Green ’s function of (A.3) is known or

can be found , one can substitute them into (A. 4) and
(A .5) and then directly verify that G satisfies the

requirements of a Green ’ s function. As an example , we

let c1 Cx) a — m (m+l) 
, so that G is known to be1

an m—th degree Legendre polynomial of the first kind

(see Appendix B for the precise form) and c2 (y) = k2,

so that C2 is a 0—th order Hankel function of the

first kind, M~~~(kr). Substituting these into (A.5)
- -

- we get an expression (4.11 in the manuscript ) for

the Green ’s function G(x ,y ;X ,Y) of the equation

u,~~ + u~~, + (k2 — I u = 0. (A .6)

- In this form, we prove that G is a solution having

the correct (logarithmic) singularity and satisfying

homogeneous conditions along the singular line x a

and vanishing at infinity. We believe this result to

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~
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be new, at least in the particularl y sim~le forms pre-

sented in the manuscript. In addition, we perform the
necessary integrations and get closed forms for the

Green’s function of (A.6) for the case ~ = 1 and k

arbitrary and for the case k = 0 and in arbitrary.

At this point in the thesis development, it was

felt that the results should be presented in the ooen

literature for the use of other mathematicians work-

ing in this field. However, two relatively straiqht—

forward questions are ignored in the manuscript. These

deficiencies are eliminated in Appendices C and 1). In

Appendix C the results of the manuscript are generalized

f rom se].f—adjoint equations in the form (A.l) to zion—

self—adjoint equations in the form

Uxx + u~~ + 2a (x)u
~ + 2b (Y ) U y + (c 1(x)+c 2 (y)]ua 0 (A.7)

and some non—self-adjoint problems are solved. In

Appendix fl ‘~e solve a oroblem in which C
2 

(y) is no

longer constant. As a matter of fact we use the results

:~ of the manuscript to find the Green ’ s function for

uxx + u~~ — (In 
(:;

1) + n ( n+l)
3 u a 0 (A. 8)

in the first quadrant of the plane satisfying homogene—

ous conditions along the coordinate axes. Once again ,

this is believed to be a new result. The fact that we

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ t~~~~~~~~~~
i-

~~~~~~~~~1 - 
- -
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could solve otherwise intractable problems like these

(i.e., Eqs . (A. 6) and (A . 8 ) )  indicate the power and

utility of the addition formula.

I

_ _ _ _



~ 

45

3. SPECULATIVE DISCUSSION

Having derived an addition formula for Green ’s

functions of elliptic equations , one begins to wonder

how the result can be generalized. In terms of func-

tional analysis, the partial differential equation

is a linear operator and the process of finding the

Green ’s function basically consists of inverting the

operator. How can we characterize those linear opera-

tors which admit an addition formula solution (to

itself or to the inverse problem)? At the present

stage of development we cannot answer this question .

In order to get a hint towards a direction to pro-

ceed, we would like to find other operators for which

addition formulae may be found. An addition formula

for Riemann functions of linear separable hyperbolic

equations in two independent variables has been found

by Papadakis and Wood (Reference 3] and their results

are stated in Appendix E. However , we still do not

have enough examples to guide us.

In section 3c of the manuscript, it is proven
that the addition formulas (A .4) and (A.5) are indeed

solutions of (A.l) away from the singularity. Follow-

ing this analysis, it would appear that if, instead of

using the Green’ s function C2 of (A. 3), we used any
solution to the homogeneous equation, we get a solu—

liar —i 
- 

.“- - •  
- - - * - — - - -.-. - - - - - 

—--~~~- --~~ ~~~ — - - - _ - -
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tion to the homogeneous equation (A. 4 ) .  Thus , we might

be able to develbo an addition formula for solutions

rather than for Green’s functions. ~Iow, totally enter-

ing the realm of speculation , it is felt that an addi-

tion formula could be derived for elliptic equations in

3 dimensions in terms of a hyperbolic and elliptic

decomposition, or possibly in terms of a decomposition

consisting of two parabolic equations. It is also

guessed that certain types of non-separable equations

might admit some form of an addition formula. Further

research into these s~ ecific areas and into functional

analysis techniques (such as those utilized in referen—

ces 4 and 5) is certainly an interesting avenue of

study..

~~~~~in - 
~~~~
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Appendix B: THE GREEN ’ S FUNCTION FOR

~~~ 
-

~~~~~~ 

m (m+ l) u = 0XX YY

Consider

LEG] = G
~~ 

- G~~ - 
m (m+i~i C a ~ ( x-X) 6 (y—Y ) . (3.1)

Multiply both sides of (3.1) by x1”2J~~ 112 (Xx ) and

integrate with respect to x from 0 to •. Aft.r

some manipulation (including two intearatioms by parts

and an application of Bessel ’ s ordinary differential
equation)

2 1/2g~~ + A g = -X J
m+1I2

(XX ) ~ (y—Y) (3.2)

where

q (y;X,Y,A) f x”2J~~1/2 (Ax)G (x ,y;X ~Y) dx. (B.3)

Recalling our previous discussions on the behavior of
— 

- Green ’s functions for hyperbolic equations and the simi-

lar form of (3.11), the solution of (3.2) is

- -.- g (v—Y;X ,X) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (3.4)

Noting from (3.3) that g is the Fourier-Bessel trans—

form of x~~
”2 G, we can inverse transform (B.4 )  and

multiply by to yield

G(x,y;X,Y)

— 
_ (xX ) ”2H ( y_Y )J a m A  CY )Jm+ .WC)J +1(XX) 

dA. 

-- - -
~~~~
-

- 

~~~~~~~~~~~~~~~~~~~~ _ _ _ _
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Reference to an appropriate table of integrals (Ref.  6 ,

pg. 732, 6.672 (1)] yields the desired result , which

is Eq. (4.4) for m a positive integer. For m not

an integer ,

0 for y—Y< ~ x-Xi

G(x ,y ;X ,y) a - 

~~

. 

~~~~ 
for x-XI -Y<x+X

- 
sin mIT 

~~~~~ 
f or x+X<y—Y

where P~ and are Legendre functions of the first
2

and second kind , resi,ectively , and ~ = 
X

2xX

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~- 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Appendix C: NON-SELP-ADJOINT EQUATION S

Although the manuscript deals only with linear

elliptic partial differential equations which are

separable and self-adjoint, the non—self-adjoint case

may be reduced to seif-adjoint form by a transforma-

tion of the dependent variable. Let us consider the

more general problem

L(G] a GXX+GYY+2a (x)GX+2b (Y)GV+(cl (x)+c 2 (Y)]G(x~
v ;X

~
Y)

= 6 (x—X) 5 (y—Y) . (C.l)

Let ~ (x,y;X ,Y) be defined by

rX (V
G(x ,y;X ,Y) a exp {_J a(t)dt .-JTh (t)dt}G(x~y;X~Y). (C.2)

X I

Under this transformation of variables , L defines the

transformed operator L by

17 -

LE G] = exp {—J a(t )d t  — ) b (t ) d t }L(G]  (C.3)
X I

where

a + + (~ 1(x) + 2 ( v ) ]G .  (C.4)

Eq. (C.4) is precisely in the form dealt with in

- 
- the manuscript. Now if G satisfies

~C~
] — s5 (x—X) ~(y—Y) (C.5)

then Eq. (C.1) is satisfied since the exponential term

~~~~~~~~~~ 

__ - _‘,--_--—- —1~~~~~~~~ - -_ _; i-— - .- - —
-,--~~ - _ -

—
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in Eq. (C.3) becomes unity when (x ,y )  a (X ,Y).

Returning to Eq. (C .4 )  we note that

and 

= c1
(x) — [a (x)] 2 

— a ’ (x), (C.6a)

~2 (y) a c2 (y) — [b (y ) ] 2 
— b ’ (y). (C.6b )

Let L have the form of the example in section 4

of the manuscript, that is

a + + (k 2 
- 

m (m ~ 1) ]G ,- (C. 7)

Eq. (4 .11) of the manuscript gives us the expression

for the Green ’s function G satisfying G = 0 on

x — 0 and ~ ~ as ~
2+~

2

Hence we can generate Green ’s functions for the

following non—seif-adjoint equations:

L1(G 11 a G1 + G1 - G j~ + k2G1, (c.8)
xx yy X

~
2 .  + G2 - G + kG2 .  (c.9)

The Green’s function for (C.8) is

-J G1(x,y;X ,Y) 
a (X ) in a(x ,y ;X ,y) (C.10)

— and for (C.9) is

G2(x ,y;X,Y ) — (~~) m 
e~~~

rY
~~ (x,y;X,Y) . (C.ll)

and are both 0 on the singular line x 0 ,

but they no longer vanish at infinity.

- ~~~~~~~~~~
- •  

~~~~~~~~~~~~ -- _
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Appendix D: THE GREEN’S FUNCTION FOR

~ + ~ - (m (m+ 1) + n (n+ l) ]U = 0.
XX yy x2

1n section 3 of the manuscript, the addition for-

mula was derived for equations of the form

uXX + u~~ + - (c1(x)+c 2
(y ) ] u  = 0.

However , in all the examples in the manuscript , c2
was identically constant . In this appendix we shall

find the Green ’s function G(x ,y;X ,Y) defined in the
first quadrant of the x ,y plane Cx > 0 , y > 0)

— satisfying

CXX + ~~~ - 1
m (m;l) + n(n ;l) I G a ~ (x—X) ~ (y-Y) (D.i )

x

and subject to the boundary conditions

G a O  on x = 0  and on y = 0 .

Following the analysis of section 4 of the manu-

script, we consider the Green’s function G1(x,t;X,0)

of the hyperbolic equation

— - m (in+~.) U a 0 (D .2 )

which we found to be (see Appendix B

1 2~~,2~~2G (x,t;X,0) a - — p ~X +A )
1 2 n t  2xX

for (x—Xj ct < x+X (D.3 )

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - 

~
~-
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and, for m a positive integer, 0 elsewhere.

Next we need the Green ’ s function C2 Ct ,v; 0,?)

for the elliptic equation

+ - 
~~~. (D.4)

The solution to this problem with boundary condition

G2 = O  on y = O  (D.5 )

was the subject of section 4f of the manuscriot and

with a change of notation is precisely Eq. (4.24):

G2 (t ,y; O,Y) = — 

~w i:~ 
P~ (Y+Y

2;
~~

_s
)~~ (D.6 )

where
- 

p ( t ) )~2+ (~~~y) 2 (D.7 a)

and

~(t) = v{c(y+Y)2 
. ~D.7b)

• Continuing to follow the analysis of section 4

we f ind our two forms for G:

G(x ,y;X,Y) = G
2
(x-X,y ;O ,Y) + 2G

1
(x,x+X ;X ,0)G2 (x+X,y;0 ,I)

tx+X -

—2 J G1 (x,t;X,O)G2 (t,y;O ,Y)dt (D.8) -

x—X t
~x+X -

G (x,t;X ,O)G2 (t,y;O ,Y)dt. (D.9)
~x—X 3. t

These forms are identical to Eqs. (4.7) and (4.8) of

the manuscript. In Eq. (D. 8) the required logarithmic

______________ _ _ _.

~~

Lf
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singularity of G is apparent ’in the first term 
- -

G (x—X ,y;O ,Y). As a matter of fact , it was proven in

the manuscript (section 4b) in an even more general

form. Combining (D . 5) with CD . 8) we find that

G(x ,O;X ,Y) 0

as desired . Also , since C1 and G2 are even func— I
tions of t, the integrand of (D.9) is odd and from

(D.9) we see that

G(O ,y ;X,Y) 0. -

Finally, direct differentiation of (D.8) and (D.9)

verifies that C is indeed a solution of the homo-

geneous form of Eq. (D.l) when (x ,y) ~ CX ,?).

Substitution of (D .3) and (D.6 )  into (D.8 ) yields

G(x,y;X,Y) — 1 1
~ (x—X) 

~ (Y
2+12+(X X)2 92)d5

p (x-X) n 2yY

• + (1)
m fp (x+X) 

y2+12+ (x+X) 2 s2 ds
2ff 

~3 (x+X) ~

_ 2 t
~X~x ._L. p~ (X

2+X2 t2 ) .
2xX m 2xX

~ 

1
~ (t) 

~ ~~
2+Y2+t2—s2j~~ •dt (D.1O)

p ( t ) fl 2y1

where p and ~ are as defined in CD. 7a) and (D. 7b).

The situation simplifies somewhat in the case rn—lan.

Then

(
— ~~ ~~~~~~~~~~~ :T~ ~~~~~~~~~~~~~~~~~~~
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G (x ,y;X,?) a + ~~ Y
2 2

~~~~~~
2 
log

L. + L y2+Y2+ (x+x) 2 log o (x +X)
2w 2ir 2yY ~(x+X)

x+X
2f 

t ~.L.. + L. Y +Y +t log Q (t)}dt (D.ll)
x—X 2xX 2w 2w 2y1 ~ (t) H

The integral may be written in a closed form consist-

ing of expressions containing powers of (x±X) and

(y±Y) and logarithms of (x±X) 2 + (~~~)
2 

(see

reference 6 , pg. 205 , 2 .732] .  -

S
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Appendix E: AN ADDITION FORMULA FOR RIEMkNN FUNCTIONS

FOR HYPEEBOLIC EQUATIONS

As mentioned in section 1 of the manuscript, the

motivation for this thesis in elliptic partial differ-

ential ecruations came from recent advances in the theory

of Riemann functions for hyperbolic partial differen-

tial equations . Because of the nice properties of

hyperbolic equations (e.g., the Riemann function is

the solution to a homogeneous equation and, thus, has

no singularity, the domain of influence of hyperbolic

equations is bounded by two real characteristics and

thus finite in the spatial direction , the Riemann

function does not depend on boundary or initial con—
- ditions) it is much simpler to state and prove an

addition formula in the hyperbolic case. The follow-

ing theorem and corollary may be found in reference

3. The proof consists basically of a change of depen—

dent variable to transform the equation from non—self-

adjoi~t form into seif-adjoint form (as was done in

Appendix C of this thesis) and direct substitution

and differentiation in the equation (as was done in

- 
- 

section 3c of the manuscript).

THEOREM . If R1(x,y,X,Y ) and R
2

Cx ,y,X ,Y) are

the respective Riemann functions for

-

- ~~~~~~~~ 
- - 

- - -
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— U~~ + 2b1
(x)U + c1(x) U = 0

and

— U — 2b2 (y )U
7 

- c2 (y) U a 0,

then the Riemann function R(x,y,X,Y) for

+ 2b
1
(X)U x 

- 2b2 (Y ) U ~ + (c1
(x) —c 2 (y ) ] U a

is given either by

R (x,y,X ,Y) a R1(:,y-Y ,X ,O ) exP (f~ b2(t)dt]

+ f R, (x ,t, X ,0) R2 (t ,y, 0 ,Y) dt
y-Y~~~ t

or by

x
R(x ,y,X ,Y) a R (x—X ,y,O ,I) ex~~( f  b1(t) dt]

2

+ j R2(t,y,G ,Y) R1 (x,t,X,O) dt.- x-X t

COROLLARY. Consider the equation

U + 4b1(r+s) (U +U51 + 4b2Cr-s) (Ur
_ti
s]

+ 4(c1(r+s) — c2 (r — s ) ] U  a CE.1)

If the Riemann function of (E.1) is V1(r ,s ,R ,S) when

b2 
a C2 

= 0 and is V2 (r ,s ,R ,S) when b1 = c1 
a 0 ,

then the Riemann function of (E.l)  is given by — 

~~~~~~~
_ 4— 

~~~~~~~~
.
—~~~~~~~~

- ‘ •  _~,4 ..-_ _ .~
_ 
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~r+s
V(r ,s ,R ,S)  a v (r,s,R ,S) exp [I b Ct) dt]1 J R+S 1

+ J~
—~ 5—~ V (r+s+t, r+s-t, 

~~~~~~~~~r— ’ R— s+S 2 2 2 2

t+r—s t—r+s a—S —a+s
2 ‘ 2 ‘ j’  2 ) d t .

H 

__ _  
_

_______  __________  
— 
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